
BASIC FUNCTIONS

BASIC FUNCTIONS continued…

ymd(), mdy(),
myd(), etc.

Parses a character string into a date value
(uses the ‘lubridate’ package)

This is the simplest solution for parsing dates in R. No matter what format the date is
written in, you can parse the date by "creating" a function with y (year), m (month),
and d (day) in the order that those values are presented in the date. You can also
supply a vector of dates to parse.

ymd("2016/June, 13") returns “2016-06-13”
dmy("13th of June, 2016") returns “2016-06-13”

seq() Used to create a vector of values that
increment at a regular rate

The argument ‘from’ indicates the starting value, the argument ‘to’ indicates the
maximum potential value, and ‘by’ indicates by what value to count.

seq(from = 0, to = 10, by = 2) returns c(0,2,4,6,8,10)

rep() Used to create a vector with a repeating set
of values

The argument ‘x’ indicates the vector or value to be repeated and ‘times’ indicates the
number of times to repeat it. ‘each’ can be used if each element in the ‘x’ vector is to be
repeated instead of the whole vector at once.

rep(x = 1:3, times = 2) returns c(1,2,3,1,2,3)
rep(x = 1:3, each = 2) returns c(1,1,2,2,3,3)

grepl() Used for finding which elements of a character
vector contain a particular string of text

The first argument is the character string to search for. The next argument is the
character vector to search through. The output is a boolean vector (TRUE/FALSE). Set
the argument ‘ignore.case = T’ can be added to ignore letter case in the search. This
function is commonly used when wanting to filter a dataframe based on the contents of a
character vector (such as filtering for a certain genus from a list of full species names).

grepl(”3", spp_vec) returns c(F,T,F,T)
dataframe[grepl(”3", dataframe$spp_vec),]

%in% Used for finding what items match between two
vectors

This is not technically a function, actually an operator, but it is so useful that it needed
to be included here. A boolean vector is returned that indicates if each element in the
first vector is present in the second vector. Often used if you have a list of species and
want to see if any of those species are present in a bigger list. The output can be used
to filter dataframes using indexing or the filter() function.

spp_vec %in% c("spp1","spp4") returns c(T,F,F,F)
c("spp1","spp4") %in% spp_vec returns c(T,F)

function()
return()

Used to create a custom function
This is often used when you need to apply some
kind of unique operation several times (or within
the mutate function from dplyr) and it is easier to
define the operations as its own function. The
arguments in this function indicate what
arguments your function will take and the return()
function is used at the end to indicate what is
returned or outputed from your function.

my_func <- function(x) {
x_mod <- (x + 5)*3
return(x_mod)

}
my_func(num_vec)

The essential functions of R

read.csv() Used to import a CSV file into R

The most common and direct way to upload data into R from a CSV file. The main
argument is the file path indicating where the csv file that you want to load is located.
The file path always begins at the base of the current working directory which you can
see with getwd(). In this example, the csv file my_data.csv is located in a folder called
"data" that is located at the root of the directory.

read.csv("data/my_data.csv")

write.csv() Used to export dataframes to CSVs

The first argument is the dataframe that you want to save, and the second argument is
the file path and name of where you want to save it. In this example, it creates a csv
file at the root of your working directory called "dataframe.csv". See read.csv() and
getwd() for more info.

write.csv(dataframe, ”data/my_data.csv")

setwd()
getwd()

Used for getting and setting the working
directory

These functions are for getting and setting the working directory (so that you can access
files when you use read.csv or write.csv). However, these functions are obsolete if you
use R Studio projects, since that automatically sets the working directory relative to the
project file location. Click here to learn more about using R Studio projects and why they
are a must! ;-)

setwd("~/Documents/ecology_study/example”)
getwd()

c() For creating vectors, this is the most basic
and common function in R

Arguments are any number of values separated
by commas to create a vector.

c(3,6,5,8,2)
c(“spp1”,”spp2”,“spp3”)

sum() Calculates the sum all values in a vector

sum(num_vec)
sum(c(2,4,NA), na.rm=T)

Supply a numeric vector and the output is the sum
of values in that vector. If the vector contains NA
values, those can be ignored by setting ‘na.rm’ to
TRUE.

length() Calculates the length of a vector or number
of columns in a dataframe

Argument is a numeric vector or dataframe.
length(num_vec)
length(dataframe)

unique() Used to return a vector of only the
unique values within a vector

The argument is any type of vector (numeric or other). Often useful when dealing with
species observations where it can be used to extract a list of all unique species
names.

unique(spp_vec)

as.numeric() Used to convert a character vector to a
numeric one

The argument is either a character vector that contains numbers, a factor vector, or
booleen vector. All values in the character vector must be numbers.

as.numeric(c(“2”,”5”,”1”))

log() Calculates the logarithm of a value (or all
values in a vector)

The argument is a numeric vector or value. Default output is the natural logarithm of
those values. This is often used when needing to transform a skewed dataset for
visualization or analysis.

log(3)
log(num_vec)

is.na() Used to test if a value is NA

Note that using the '==' operator to test if a value is NA does not work (results in NA),
since NA by-definition is unknown (i.e., NA == NA does not return TRUE). That is why
this function is useful.

is.na(NA) returns TRUE
is.na(c(4,NA)) returns c(FALSE, TRUE)

sort() Used to rearrange a vector numerically or
alphabetically

The argument is a numeric or character vector and the output rearranges the vector in
ascending or descending order.

sort(num_vec)
sort(num_vec, decreasing=T)
sort(spp_vec)

ifelse() Used for changing values within a vector or
column in a dataframe based on a
conditional statement

It is commonly used for converting values to NA (such as when excluding outliers) or
replacing NAs with other values. The first argument is a conditional statement, the
second argument is the value to return each time the statement is true, and the third
argument is the value to return each time the statement is false. Read it as If arg1, then
arg2, else arg3.

ifelse(num_vec > 7, NA, num_vec) returns c(3,6,3,NA)

data() Used to access built-in datasets

A useful function for accessing built in datasets if you want to practice what you are
learning in R. Running the data function with no arguments opens a pane with a list of all
available datasets. Then just run the with the name of the dataset to load it into the
environment. If you want to learn more about a particular dataset, use the help() function
with the name of the dataset as the argument.

data()
data(trees)
help(trees)

help() Access the detailed documentation and help
file for a particular function

The argument is the name of the function that you need to find more information about.
Note that Google search is your best best friend if the help references alone are not
enough.

help(mean)

install.packages()
library()

Downloads and installs an R package to
your computer, and then loads it into the
working environment

install.packages("dplyr")
library(“dplyr”)

Two essential functions for installing and loading packages. The argument is simply the
name of the package that you would like to install/load. Note that the package must be
installed first only once, and then load it whenever you open a new R session.

How to use this cheat sheet:

Welcome to this cheat sheet on all the most
common and essential functions for using RStart Here!

as an ecologist. The 51 functions covered here will allow you to do at least
80% of all the operations you will ever need to do in R as an ecologist.
Where two ways to do the same operation are available, only the more
efficient or industry standard function was selected (e.g., ‘dplyr’). All
functions use the ‘base’ R package unless otherwise noted.

Most functions contains examples that can be run by first
creating the following variables with this code:
num_vec <- c(3,6,3,8)
spp_vec <- c("spp1","spp3","spp2","spp3")
dataframe <- data.frame(num_vec, spp_vec)
data(trees)
tree_data <- trees
tree_data$light <- c(rep(c("shade","sun"),each=15),"sun")
tree_data$light <- as.factor(tree_data$light)
my_matrix <- as.matrix(dataframe)

(for ecology)

[side 1] LOADING DATA

CREATING CUSTOM FUNCTIONS

MISCELLANEOUS FUNCTIONS

Created by Luka Negoita, Copyright © 2021 R for Ecology | See more at www.RforEcology.com | The essential functions of R (for ecology) Cheat Sheet v1.0 2021-07-19 - Side 1 of 2

https://r4ds.had.co.nz/workflow-projects.html
http://www.rforecology.com/

The essential
functions of R
(for ecology) [side 2]

plot() Used to make scatterplots and boxplots

Used frequently for most types of simple visualizations. The syntax for the plot
function is based on two vectors, which can also be column names of a dataframe that
is specified with the ‘data’ argument. The tilde or '~' can be read as "is a function of", so
the first variable (the Y axis variable) is a function of the second variable (the X axis
variable). If the second (X) variable is categorical (factor variable), then the output is a
boxplot instead of a scatterplot.

plot(Height ~ Volume, data=tree_data) returns scatterplot
plot(Girth ~ light, data=tree_data) returns boxplot

hist() Used for creating simple histograms from a
numeric vector

Commonly used for quickly getting a sense of how your data are distributed. The
argument is simply a vector of numbers which can also be the column of a dataframe.

hist(tree_data$Height)

abline() Used to add lines to plots

Often it is used when adding a best-fit regression line to plots. Also used for adding
vertical or horizontal lines necessary for a particular visualization (such as indicating
thresholds on a plot). You can supply the result of a fitted linear model (see lm()) for
adding a best-fit regression line to a scatterplot. Alternatively, 'v' can be used to
create a vertical line where the value of v is where on the x axis it is placed. Same
with 'h' for creating horizontal lines, but for the value on the y axis. Important to note
that this function must be run right after a plot function for the line to appear on that
graphic.

fitted_model <- lm(Girth ~ Height, data=tree_data)
plot(Girth ~ Height, data= tree_data)
abline(fitted_model, col=4)
abline(v=70, col=2)
abline(h=16, col=3)

as_tibble() Used to convert a regular dataframe or
matrix into a tibble dataframe (uses the
‘dplyr’ package)

Same idea as as.data.frame(), but converts the other way (from a regular dataframe or
matrix to a tibble). Click here to read more about why tibbles are often better to use
than regular dataframes.

as_tibble(dataframe)

as.matrix() Used to convert a tibble or regular
dataframe into a matrix

Matrices are often needed in place of regular dataframes when building a species by
site matrix used for certain multivariate analyses. The argument is the dataframe that
you want to convert.

as.matrix(dataframe)

t() Used to swap the rows and columns in a
matrix

Most often used when working with species by site matrices for multivariate analysis.
The argument is a matrix (or a dataframe, but the results can be a bit messy).

t(my_matrix)

ncol()
nrow()

Use to quickly get the number of rows or
columns in a dataframe or matrix

The argument is a dataframe or matrix.ncol(dataframe)
nrow(dataframe)

head() Used to get a quick glance at your dataframe
by showing the top several rows

The main argument is just the dataframe you want to view. Eventually it is better
practice just to use tibbles instead of normal dataframes (see dplyr package and
as_tibble()).

head(tree_data)

select() Used to filter and rename columns you want to
keep in a dataframe (uses the ‘dplyr’ package)

The first argument is the dataframe, and then the rest are the columns that you want to
keep. If you add "=" before a column, you can create a new name for it. Finally, you can
also use the minus sign "-" before each column name to keep everything except those
columns.

select(tree_data,
Height, Volume, new_name = Girth)

filter() Used to filter a dataframe based on the values
in one column (uses the ‘dplyr’ package)

The first argument is the dataframe that you want to filter, and the rest are a series of
conditional statements (that return T or F) using the columns in that dataframe. Rows are
kept where all conditional statements return TRUE. This example will filter and keep all
rows in tree_data where Height is less than 80 and Girth is greater than 12.

filter(tree_data, Height < 80, Girth > 12)

mutate() Used to create new columns in your
dataframe or to modify existing ones (uses the
‘dplyr’ package)

The first argument is the dataframe and then each expression separated by a comma is a
column modification. In this case, Height_meters a new column that is created to convert
the measurement to meters. Girth is modified to make all the values just the mean value
of that entire original column.

mutate(tree_data,
Height_meters = Height * 0.3048,
Girth = mean(Girth))

group_by()
ungroup()

Used to group rows within a dataframe (uses
the ‘dplyr’ package)

the summarize, mutate, or filter functions within those groupings. The most common use
is with the summarize() function to create summaries based on groups. Use ungroup() to
remove the grouping from the dataframe. The first argument is always the dataframe.
Then, as with the select() function, just write out the column names that you want to
group by. Using more than one column creates groups based on the unique combination
of value found in those columns.

trees_grouped <- group_by(tree_data, light)
summarize(trees,

mean_girth = mean(Girth),
max_height = max(Height))

ungroup(dataframe)

summarize() Used to summarize the column values within
a dataframe (uses the ‘dplyr’ package)

always the dataframe. Then as with the mutate function, create new variables that are
defined summary statistics applied to columns. Any function can be used if it returns
one summary value. If the dataframe was previously grouped using group_by(), then
one row of summary values will be created for each grouping.

summarize(tree_data,
mean_girth = mean(Girth),
max_height = max(Height))

left_join() Used to combine two dataframes based on a
reference column (uses the ‘dplyr’ package)

This is commonly used when combining a dataset on species abundances with one on
environmental data, as long as both datasets contain a reference column such as plot
ID. The first argument is the dataset that contains most of the data (that you are
appending to), so left_join will ensure to keep all rows in the that first (left) dataframe.
If you want to join them but the columns have different names, then use the argument
by = c("column1" = "column2"), where column1 is the column name in the first
dataframe, and column2 is the column name in the second dataframe.

left_join(dataframe1, dataframe2, by = "Plot_ID")

names() Used to quickly extract the column names
of a dataframe

A very common function, it is used to quickly extract and see all the column names in a
dataframe. This is useful if you've forgotten what a column is named and you need to
refer to it. The argument is a dataframe.

names(tree_data)

data.frame() Used to create a regular dataframe

Used for creating a dataframe by combining several vectors of equal length. Same as
tibble() but creates a regular dataframe. Just list all the vectors that describe the
columns in the dataframe. The column name is indicated before the "=" and after are
the values that make up that column.

dataframe <- data.frame(column1=1:4, column2=num_vec)

tibble() Used to create a tibble dataframe (uses the
‘dplyr’ package)

Same as data.frame() (see above), but creates a tibble dataframe which has advantages
over regular dataframes. Click here to learn more. Both types of dataframes are included
in this cheat sheet because regular dataframes are still very commonly used.

dataframe <- tibble(column1=1:4, column2=num_vec)

as.data.frame() Used to convert a tibble dataframe or
matrix into a regular dataframe

The argument is the tibble or matrix that you want to convert to a regular dataframe.
Some older functions require regular dataframes, so use this function to convert.

as.data.frame(matrix)

Commonly used with group_by() to
create summaries of different groups
in your data. The first argument is

This function creates groupings
based on categorical variables in a
dataframe. On its own the function is
not useful, but it allows you to apply

lm() Used for fitting a simple linear regression
model

This is the simplest and most basic function for data analysis but super versatile and
used for any type of linear model such as t-test, ANOVA, regression, multiple
regression, etc. The syntax is the same as for the plot() function in which a formula is
used in the first argument. The first variable is the Y or response variable in the
model. The right side of the '~' includes all the independent variables in the model.
The output of this function is expanded when viewed with the summary() function.

mod1 <- lm(girth ~ height, data = tree_data)
mod2 <- lm(Yvar ~ Xvar1 + Xvar2 +Xvar3, data = my_data)

summary() Creates a summary of columns in a
dataframe or results from a statistical model
(e.g., lm())

Used for viewing a quick summary of all columns in a dataframe, but more often useful
for extracting detailed results from statistical models such as lm(). The argument is
either a dataframe or a model object such as what is generated with a lm() function.

summary(dataframe)
mod1 <- lm(Girth ~ Height, data=tree_data)
summary(mod1)

mean() Calculates the mean value of a numeric vector
Takes in a numeric vector and the output is the mean
value. If the vector contains NA values, those can be
ignored by setting the argument na.rm to TRUE.

mean(num_vec)
mean(num_vec, na.rm=T)

max(), min() Calculates the maximum or minimum value
of a numeric vector

Takes in a numeric vector and the output is the maximum
or minimum value. If the vector contains NA values, those
can be ignored by setting the argument na.rm to TRUE.

max(num_vec)
min(num_vec, na.rm=T)

median() Calculates the mean value of a numeric vector
Takes in a numeric vector and the output is the median
value. If the vector contains NA values, those can be
ignored by setting the argument na.rm to TRUE.

median(num_vec)
median(num_vec, na.rm=T)

table() Used to count the number of each unique
value in a vector

Maybe the most useful but underrated function in R. This takes a categorical vector and
tabulates the number of occurrences of each value. This is super useful for getting a
quick summary of any categorical variables or data. The argument is just a categorical
(factor or character) vector.

table(spp_vec)

BASIC DATA VISUALIZATION

WORKING WITH DATAFRAMES

WORKING WITH DATAFRAMES continued…

BASICS OF DATA WRANGLING

BASIC STATISTICS

BASICS OF DATA WRANGLING continued…

Created by Luka Negoita, Copyright © 2021 R for Ecology | See more at www.RforEcology.com | The essential functions of R (for ecology) Cheat Sheet v1.0 2021-07-19 - Side 2 of 2

https://r4ds.had.co.nz/tibbles.html
https://r4ds.had.co.nz/tibbles.html
http://www.rforecology.com/

